Dependency injection i automapper

Od dłuższego czasu korzystam z automappera, jest to genialne rozwiązanie gdy trzeba mapować jeden obiekt na drugi. Gdy w klasach, z i do której chcemy mapować wszystkie typy właściwości/pól i ich nazwy się zgadzają nie trzeba robić praktycznie nic, gdy pojawiają się inne nazwy, wystarczy tylko wskazać że pole właściwość W w klasie A to właściwość X w klasie B i tyle, raz i spokój do końca projektu. Gdy typy się nie zgadzają, można skorzystać z konwerterów, zarówno na poziomie właściwości jak i całych klas. Jeśli nie wiesz o czym mówię wróć 🙂 tutaj za kilka dnia, a ja obiecuje że popełnie wpis o automapperze. Opis – Automappera. Ale nie o tym chciałem napisać. Jeśli ktoś nie korzysta to polecam, jeśli potrzeba pomocy to proszę dać znać, a teraz do rzeczy.

Czasem konwertery aby dobrze wykonać swoją robotę potrzebują innej klasy, oczywiści można ją stworzyć w konstruktorze, ale to nie będzie ładne rozwiązanie, wszystko przez mocne wiązania, które ostatnio wyszły z mody. Na szczęście wymyślono wstrzykiwanie zależności, a automapper nie przeszkadza w skorzystaniu z tej idei. Co zrobić, aby to zadziałało?

Wystarczy taki kawałek kodu dodać do inicjalizacji automappera

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: Consolas, “Courier New”, Courier, Monospace;
background-color: #ffffff;
/*white-space: pre;*/
}

.csharpcode pre { margin: 0em; }

.csharpcode .rem { color: #008000; }

.csharpcode .kwrd { color: #0000ff; }

.csharpcode .str { color: #a31515; }

.csharpcode .op { color: #0000c0; }

.csharpcode .preproc { color: #cc6633; }

.csharpcode .asp { background-color: #ffff00; }

.csharpcode .html { color: #800000; }

.csharpcode .attr { color: #ff0000; }

.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}

.csharpcode .lnum { color: #606060; }

   1:  public static void Initialize(IDependencyResolver current)
   2:  {
   3:      Mapper.Initialize(cfg => cfg.ConstructServicesUsing(t => current.GetService(t)));
   4:      // here goes other initialization of automapper          
   5:  }

Pewnie się zapytacie skąd i jak jest wołane? Ja bym się pytał. Więc tak to robię ja, w Application_Start w global.asax.cs

   1:  ModelMapper.Initialize(DependencyResolver.Current);

Potem gdy chcemy skorzystać z jakiegoś konwertera, na liście parametrów w kontruktorze można podać to czego potrzbujemy i czekać aż framework zrobic swoją magię:

   1:  public class Id2ConceptStatistics : TypeConverter<long, ConceptStatistics>
   2:  {
   3:      private readonly IUnitOfWork unitOfWork;
   4:   
   5:      public Id2ConceptStatistics(IUnitOfWork unitOfWork)
   6:      {
   7:          this.unitOfWork = unitOfWork;
   8:      }
   9:   
  10:      protected override ConceptStatistics ConvertCore(long id)
  11:      {
  12:          var conceptStatistics = this.unitOfWork.ConceptStatistics.GetByID(id);
  13:          var result = conceptStatistics ?? new ConceptStatistics();
  14:          return result;
  15:      }
  16:  }

Powyżej przykład na to jak z long (który jest id) można zmapować na pełno prawną klasę, która jest zagnieżdżona gdzieś w innej klasie.

To tyle.

Do ludzi, śmiało ku nowej przygodzie.

Pora wyjść z
piwnicy, a przynajmniej wystawić głowę.
Jakiś czas temu
miałem chęć napisać webowej aplikacji, której głównym założeniem była idea
ułatwienia współpracy pomiędzy ludźmi (oraz poznanie asp mvc). Chciałem
uproszczenia tego w jaki sposób ludzi znajdują ludzi, z którymi mogą działać
razem. Wyszedłem z założenia że są w nas chęci do pracy, ale brak pomysłu oraz
sytuacje odwrotne, gdy jest plan a brakuje rąk do pracy.  Może być też tak, że brakuje środków i nie
mam na myśli pieniędzy, tylko jakieś rekwizyty, czy specjalne umiejętności. (To
w wersji 2.0), czasem też ktoś ma pomysł, ale chciałby się poradzić, czy to co
wymyślił ma sens, albo czy już ktoś tego nie zrobił wcześniej. Właśnie dlatego
wszystkiego powstał “to be implemented” (wiem, że google miało coś
podobnego, o czym dowiedziałem się kilka dni temu).
Na portalu każde
może napisać czego szuka, albo co chciałby stworzyć, może być tak, że nie chce
pisać aplikacji, tylko szuka już gotowego rozwiązania mając nadzieję, że takie
istnieje. Albo chciałby napisać coś, ale nie wie spotka się to pozytywnym przyjęciem,
etc.
Idealnie sytuacja:
strona jest dla wszystkich ludzi, z dowolnej branży, nie tylko dla devów, ale
wiecie jak jest. Tak czy siak, jeśli ktoś znajdzie ktoś czas i chęci to proszę
o parę kliknięć na stronie i podzielenie się wrażeniami.
Technicznie:
Uwagi chętnie
przyjmuje tutaj, na bucket, na trello, czy w innej formie.
Przykłady pomysłów,
dla tych którym nie chciało się wejść na stronę:
1.Szukam aplikacji
która umożliwia mi włączenie / wyłączenie dodatkowego monitora. Np. WIN+1
włączenie/wyłączenie lewego monitora, WIN+2 włączenie/wyłączenie prawego, WIN+3
włączenie/wyłączenie obu zewnętrznych monitorów.
1a. Albo jakiś soft,
który potrafi przełączać także inne urządzenia, np. mam podpiętą kartę muzyczną
na USB i mam wewnętrzną, chciałbym łatwo się przełączać pomiędzy nimi, jakaś
kombinacja klawiszy mile widziana.
2. Wymyśliłem taką
webową aplikacje, do dzielenia się pomysłami, ale nie jestem grafikiem, w
związku z tym chętnie przyjmę pomoc w sprawie designu, ktoś chciałby pomów?
Strona jest już w sporej części zrobiona, ale byłoby miło gdyby wyglądała
lepiej.
3. Ukradzione od
kolegi Damiana: w VS chciałbym przy pomocy jakiejś magicznej kombinacji
klawiszy np. ALT+CTRL+(LEFT|RIGHT) móc obejrzeć historię zmian w pliku, a już
fantastycznie gdyby zasięg był tylko w ramach metody w której jestem.
4. Mam trochę czasu
po pracy i chętnie popisałbym coś w MVC, jeśli ktoś szuka programisty, to
chętnie dołączę do zespołu i pomogę. Mogę zaoferować swój czas i umiejętności w
asp mvc, trochę javascript, czy inne skrypty.

ps.
Aktualnie prowadzę mały refaktoring, także kolejne funkcjonalności czekają.
ps1.
Jeśli macie pomysły to także chętnie przyjmę
ps2.
Wiem już o ‘http://www.builditwith.me/’

Własna konfiguracja w app.config

Jeśli to czytacie, to znaczy że zdążyłem jeszcze z wpisem przed nowym rokiem.  Udało mi się napisać jeszcze jednego posta przed nowym rokiem – jestem królem świata!

Dzisiaj o wykorzystaniu app.config dla własnych celów. Skąd taki pomysł? Otóż jak każdy pewnie ma lub miał w życiu, czasem mieć taką potrzebę aby zmieniać zachowanie aplikacji inaczej niż przez jej przekompilowanie. Wtedy właśnie z pomocą przychodzą pliki .txt, .xml, .config czy dawno dawno temu .ini. Można napisać własne system do obsługi konfiguracji, własne klasy serializujące i deserializujące, można pisać cudne rzeczy. Ale po co, skoro można skorzystać z tego co oferuje app.config. Też tak pomyślałem i rozpętało się piekło. Bo nie da się ot tak dowalić do app.configu swojego kawałka xmla. Trzba to wszystko dokładnie, ale to dokładnie opisać. O ile wytrzymacie ten wpis, to zaraz wszystko wyjaśnię.

Zacznę od początku na prostych obiektach. Np. gdybym chciał w pliku zdefiniować wygląd jakiegoś prostego obiektu, np.

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: Consolas, “Courier New”, Courier, Monospace;
background-color: #ffffff;
/*white-space: pre;*/
}

.csharpcode pre { margin: 0em; }

.csharpcode .rem { color: #008000; }

.csharpcode .kwrd { color: #0000ff; }

.csharpcode .str { color: #a31515; }

.csharpcode .op { color: #0000c0; }

.csharpcode .preproc { color: #cc6633; }

.csharpcode .asp { background-color: #ffff00; }

.csharpcode .html { color: #800000; }

.csharpcode .attr { color: #ff0000; }

.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}

.csharpcode .lnum { color: #606060; }

   1:  <?xml version="1.0" encoding="utf-8" ?>
   2:  <configuration>
   3:      <MyConfiguration>
   4:          <Rectangle Color="Red" Width="10" Height="5" Fill="False"/>
   5:      </MyConfiguration>
   6:  </configuration>

Wiecie co się stanie przy próbie uruchomienia takiego prostego kodu jak ten:

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: Consolas, “Courier New”, Courier, Monospace;
background-color: #ffffff;
/*white-space: pre;*/
}

.csharpcode pre { margin: 0em; }

.csharpcode .rem { color: #008000; }

.csharpcode .kwrd { color: #0000ff; }

.csharpcode .str { color: #a31515; }

.csharpcode .op { color: #0000c0; }

.csharpcode .preproc { color: #cc6633; }

.csharpcode .asp { background-color: #ffff00; }

.csharpcode .html { color: #800000; }

.csharpcode .attr { color: #ff0000; }

.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}

.csharpcode .lnum { color: #606060; }

   1:  static void Main(string[] args)
   2:  {
   3:      var cfg = ConfigurationManager.AppSettings;
   4:  }

Aby konfiguracja zadziałała, trzeba dodać informację do app.cofig o naszej sekcji konfiguracyjnej.

   1:  <configSections>
   2:      <section name="MyConfiguration" type="AppConfigExample.MyConfiguration, AppConfigExample"/>
   3:  </configSections>

W części type podajemy gdzie znajdzie się klasa opisująca naszą konfigurację. Wpis musi zawierać pełny namespace, następnie należy podać także assembly w który się ona znajduje. Tutaj wszystko mam w jednym assembly.
Skoro trzeba podać klasę to trzeba ją także gdzieś i jakoś zdefiniować i podziedziczyć:

   1:  public class MyConfiguration : ConfigurationSection
   2:  {
   3:  }

A następnie spróbować się do niej dostać:

   1:  var cfg = ConfigurationManager.GetSection("MyConfiguration");

Niestety to nadal za mało (powoli buduje nastrój grozy):

Lubię .net i jego wyjątki za czytelne błędy i opisy problemów, lubię też google czy SO za pomoc w rozwiązywaniu tych wyjątków. Chwila szukania i już wiem co należy dodać, aby móc odczytać mój kwadracik z konfiguracji:

   1:  public class MyConfiguration : ConfigurationSection
   2:  {
   3:      [ConfigurationProperty("Rectangle")]
   4:      public Rectangle Rectangle
   5:      {
   6:          get { return ((Rectangle)(base["Rectangle"])); }
   7:      }
   8:  }

Skoro wspominamy tutaj o klasie Rectangle to należy ją także jakoś zdefiniować i znowu dziedziczenie:

   1:  public class Rectangle: ConfigurationElement
   2:  {
   3:      [ConfigurationProperty("Color")]
   4:      public ConsoleColor Color
   5:      {
   6:          get { return (ConsoleColor)base["Color"]; }
   7:          set { base["Color"] = value; }
   8:      }
   9:   
  10:      [ConfigurationProperty("Width")]
  11:      public int Width
  12:      {
  13:          get { return (int)base["Width"]; }
  14:          set { base["Width"] = value; }
  15:      }
  16:   
  17:      [ConfigurationProperty("Height")]
  18:      public int Height
  19:      {
  20:          get { return (int)base["Height"]; }
  21:          set { base["Height"] = value; }
  22:      }
  23:   
  24:      [ConfigurationProperty("Fill")]
  25:      public bool Fill
  26:      {
  27:          get { return (bool)base["Fill"]; }
  28:          set { base["Fill"] = value; }
  29:      }
  30:  }

Gdy mamy taki kod możemy spokojnie spróbować swoich sił i uruchomić coś takiego:

   1:  var cfg = ConfigurationManager.GetSection("MyConfiguration") as MyConfiguration;
   2:   
   3:  var oc = Console.ForegroundColor;
   4:  Console.ForegroundColor = cfg.Rectangle.Color;
   5:   
   6:  Console.WriteLine("Width:{0}, Height:{1}, Filled:{2}", cfg.Rectangle.Width, cfg.Rectangle.Height,
   7:                    cfg.Rectangle.Fill);
   8:   
   9:  Console.ForegroundColor = oc;
Co powinno dać taki wynik:

Chyba nie macie dosyć? Nie warto zaprzestawać na tylko jednym takim obiekcie, skoro na świecie jest tyle pięknych prostokątów, załóżmy taki przypadek:

   1:  <MyConfiguration>
   2:      <Rectangle Color="Red" Width="10" Height="5" Fill="False"/>
   3:      <Rectangle Color="Green" Width="12" Height="6" Fill="False"/>
   4:      <Rectangle Color="Black" Width="14" Height="3" Fill="True"/>
   5:      <Rectangle Color="White" Width="15" Height="2" Fill="True"/>
   6:      <Rectangle Color="Gray" Width="16" Height="10" Fill="False"/>
   7:  </MyConfiguration>

Co się stanie po uruchomieniu aplikacji z taką konfiguracją?

No racja racja, przecież to kolekcja prostokątów, powinna wyglądać inaczej, bo skąd biedny komputerek może wiedzieć o który obiekt dokładnie nam chodzi.

Macie tak czasami, że wy wiecie że się nie uda czegoś zrobić, a komputer jeszcze walczy? Np. klikniecie przez przypadek na napędzie CD, tam nie ma płyty, wszyscy to wiedzą, ale nie, 15 sekund trzeba czekać zanim komputerek też się dowie. Sieć nie działa, wszyscy wiedzą, a komp walczy. Najgorsze jest to że się nie uczy. Skoro nie było płyty, i napęd się nie wysunął i nie wsunął, to płyty nadal tam nie będzie. Ale kliknij znowu na ikonę z CD i znowu czekasz, bo może jednak jest. Ech takie szybkie i takie głupie.

Wracając do naszego problemu, jak zrobić żeby ten biedny komputerek poradził sobie z wieloma prostokącikami:

   1:  <Rectangles>
   2:      <Rectangle Color="Red" Width="10" Height="5" Fill="False"/>
   3:      <Rectangle Color="Green" Width="12" Height="6" Fill="False"/>
   4:      <Rectangle Color="Black" Width="14" Height="3" Fill="True"/>
   5:      <Rectangle Color="White" Width="15" Height="2" Fill="True"/>
   6:      <Rectangle Color="Gray" Width="16" Height="10" Fill="False"/>
   7:  </Rectangles>

Ale wtedy znowu będzie marudzić, że unrecognized element i że “Rectangles” to ten unrecognized. Trzeba więc zaktualizować informację z klasie MyConfiguration na taki:

   1:  public class MyConfiguration : ConfigurationSection
   2:  {
   3:      [ConfigurationProperty("Rectangles")]
   4:      public Rectangles Rectangles
   5:      {
   6:          get { return ((Rectangles)(base["Rectangles"])); }
   7:      }
   8:  }

Oraz zdefiniować odpowiednio klasę Rectangles. Możecie spróbować samodzielnie ją zdefiniować i zobaczyć jaki poleci wyjątek, lub też przeczytać dalej i zobaczyć jak robią to inni:

   1:  [ConfigurationCollection(typeof(Rectangle))]
   2:  public class Rectangles : ConfigurationElementCollection
   3:  {
   4:      protected override ConfigurationElement CreateNewElement()
   5:      {
   6:          return new Rectangle();
   7:      }
   8:   
   9:      protected override object GetElementKey(ConfigurationElement element)
  10:      {
  11:          return element.GetHashCode();
  12:      }
  13:  }

Linijka 11 nie wygląda najlepiej. A poza tym może spowodować błąd (podczas domyślnej implementacji GetHashCode), aby go uniknąć należy napisać własne GetHashCode w klasie Rectangle lub dołożyć jakiś klucz, co później ułatwi dostęp do wybranych elementów z kolekcji.
Klasę Rectangle należy uaktualnić o następujące pole:

   1:  [ConfigurationProperty("Id", IsKey = true, IsRequired = true)]
   2:  public int Id
   3:  {
   4:      get { return (int)base["Id"]; }
   5:      set { base["Id"] = value; }
   6:  }

Natomiast metoda GetElementKey wyglądać teraz będzie tak:

   1:  protected override object GetElementKey(ConfigurationElement element)
   2:  {
   3:      return ((Rectangle)element).Name;
   4:  }

Kolekcja elementów w app.config wygląda teraz tak:

   1:  <Rectangles>
   2:      <add Id="1" Color="Red" Width="10" Height="5" Fill="False"/>
   3:      <add Id="2" Color="Green" Width="12" Height="6" Fill="False"/>
   4:      <add Id="3" Color="Black" Width="14" Height="3" Fill="True"/>
   5:      <add Id="4" Color="White" Width="15" Height="2" Fill="True"/>
   6:      <add Id="5" Color="Gray" Width="16" Height="10" Fill="False"/>
   7:  </Rectangles>

I znowu coś nie cool, to idiotyczne add – bleh, brzydal. Gdzie się podziało ładne Rectangle? Ponownie zachęcam do sprawdzenia wyjątku jaki leci, gdy zamiast add będzie Rectangle. Na szczęście i to da się napisać lepiej, wystarczy ponownie zaktualizować informację o klasie Rectangles, brakuje tam małej informacji w atrybutach klasy:

   1:  [ConfigurationCollection(typeof(Rectangle), AddItemName = "Rectangle")]
   2:  public class Rectangles : ConfigurationElementCollection { /* unicorns here */ }

Od teraz znowu zamiast add możemy stosować Rectangle i uruchomić taki kod:

   1:  var cfg = ConfigurationManager.GetSection("MyConfiguration") as MyConfiguration;
   2:  var oc = Console.ForegroundColor;
   3:   
   4:  foreach (Rectangle rectangle in cfg.Rectangles)
   5:  {
   6:      Console.ForegroundColor = rectangle.Color;
   7:      Console.WriteLine("Width:{0}, Height:{1}, Filled:{2}", rectangle.Width, rectangle.Height,rectangle.Fill);
   8:      Console.ForegroundColor = oc;
   9:  }

Co według mojego działania da taki wynik:

A ja wybrać ten jeden w swoim rodzaju Rectangl? Skoro mamy jego Id to powinniśmy z niego jakoś skorzystać. Może linq? Potrzebujemy tylko IEnumerable w klasie Rectangles i będzie działać, a więc:

   1:  [ConfigurationCollection(typeof(Rectangle), AddItemName = "Rectangle")]
   2:  public class Rectangles: ConfigurationElementCollection, IEnumerable<Rectangle>
   3:  {
   4:      { /* dragons here */ }
   5:      public new IEnumerator<Rectangle> GetEnumerator()
   6:      {
   7:          int count = base.Count;
   8:          for (int i = 0; i < count; i++)
   9:          {
  10:              yield return base.BaseGet(i) as Rectangle;
  11:          }
  12:      }
  13:  }

I można już napisać coś takiego w kodzie:

   1:  Rectangle rect = cfg.Rectangles.Single(r => r.Id == 2);
   2:   
   3:  Console.ForegroundColor = rect.Color;
   4:  Console.WriteLine("Width:{0}, Height:{1}, Filled:{2}", rect.Width, rect.Height, rect.Fill);

Od teraz wszyscy mogą zazdrościć wam wiedzy o tym, jak lepiej wykorzystywać app.config w swoich aplikacjach.

A teraz cały kod z wpisu:

   1:  using System;
   2:  using System.Collections.Generic;
   3:  using System.Configuration;
   4:  using System.Linq;
   5:  using System.Text;
   6:   
   7:  namespace AppConfigExample
   8:  {
   9:      class Program
  10:      {
  11:          static void Main(string[] args)
  12:          {
  13:              var cfg = ConfigurationManager.GetSection("MyConfiguration") as MyConfiguration;
  14:              var oc = Console.ForegroundColor;
  15:   
  16:              foreach (Rectangle rectangle in cfg.Rectangles)
  17:              {
  18:                  Console.ForegroundColor = rectangle.Color;
  19:                  Console.WriteLine("Width:{0}, Height:{1}, Filled:{2}", rectangle.Width, rectangle.Height, rectangle.Fill);
  20:              }
  21:   
  22:              Console.WriteLine("****************************************");
  23:              Rectangle rect = cfg.Rectangles.Single(r => r.Id == 2);
  24:   
  25:              Console.ForegroundColor = rect.Color;
  26:              Console.WriteLine("Width:{0}, Height:{1}, Filled:{2}", rect.Width, rect.Height, rect.Fill);
  27:   
  28:   
  29:   
  30:              Console.ForegroundColor = oc;
  31:          }
  32:      }
  33:   
  34:   
  35:      public class MyConfiguration : ConfigurationSection
  36:      {
  37:          [ConfigurationProperty("Rectangles")]
  38:          public Rectangles Rectangles
  39:          {
  40:              get { return ((Rectangles)(base["Rectangles"])); }
  41:          }
  42:      }
  43:   
  44:      [ConfigurationCollection(typeof(Rectangle), AddItemName = "Rectangle")]
  45:      public class Rectangles : ConfigurationElementCollection, IEnumerable<Rectangle>
  46:      {
  47:          protected override ConfigurationElement CreateNewElement()
  48:          {
  49:              return new Rectangle();
  50:          }
  51:   
  52:          protected override object GetElementKey(ConfigurationElement element)
  53:          {
  54:              return ((Rectangle)element).Id;
  55:          }
  56:   
  57:          public new IEnumerator<Rectangle> GetEnumerator()
  58:          {
  59:              int count = base.Count;
  60:              for (int i = 0; i < count; i++)
  61:              {
  62:                  yield return base.BaseGet(i) as Rectangle;
  63:              }
  64:          }
  65:      }
  66:   
  67:      public class Rectangle : ConfigurationElement
  68:      {
  69:          [ConfigurationProperty("Id", IsKey = true, IsRequired = true)]
  70:          public int Id
  71:          {
  72:              get { return (int)base["Id"]; }
  73:              set { base["Id"] = value; }
  74:          }
  75:   
  76:          [ConfigurationProperty("Color")]
  77:          public ConsoleColor Color
  78:          {
  79:              get { return (ConsoleColor)base["Color"]; }
  80:              set { base["Color"] = value; }
  81:          }
  82:   
  83:          [ConfigurationProperty("Width")]
  84:          public int Width
  85:          {
  86:              get { return (int)base["Width"]; }
  87:              set { base["Width"] = value; }
  88:          }
  89:   
  90:          [ConfigurationProperty("Height")]
  91:          public int Height
  92:          {
  93:              get { return (int)base["Height"]; }
  94:              set { base["Height"] = value; }
  95:          }
  96:   
  97:          [ConfigurationProperty("Fill")]
  98:          public bool Fill
  99:          {
 100:              get { return (bool)base["Fill"]; }
 101:              set { base["Fill"] = value; }
 102:          }
 103:      }
 104:  }

Oraz app.config:

   1:  <?xml version="1.0" encoding="utf-8" ?>
   2:  <configuration>
   3:      <configSections>
   4:          <section name="MyConfiguration" type="AppConfigExample.MyConfiguration, AppConfigExample"/>
   5:      </configSections>
   6:      <MyConfiguration>
   7:          <Rectangles>
   8:              <Rectangle Id="1" Color="Red" Width="10" Height="5" Fill="False"/>
   9:              <Rectangle Id="2" Color="Green" Width="12" Height="6" Fill="False"/>
  10:              <Rectangle Id="3" Color="Black" Width="14" Height="3" Fill="True"/>
  11:              <Rectangle Id="4" Color="White" Width="15" Height="2" Fill="True"/>
  12:              <Rectangle Id="5" Color="Gray" Width="16" Height="10" Fill="False"/>
  13:          </Rectangles>
  14:      </MyConfiguration>
  15:  </configuration>

To by było na tyle, bierzcie i korzystajcie z tego, bo to dobre jest.
Pozostaje mi tylko życzyć dobrego w nadchodzącym nowym roku!
Tej!

Metody rozszerzające – testowanie i porządek w api.

Jak każdemu porządnemu developerowi zdarza mi się czasem napisać testy. Jak każdemu porządnemu developerowi, czasem zdarza mi się wykorzystać mechanizm metod rozszerzających (jeśli nie wiesz o czym mówię sprawdź na msdn). Jak każdy prawdziwy developer, chciałem przetestować logikę, która była wykorzystywana w jednej z takich metod. W zasadzie to nie w samej metodzie, chciałem sprawdzić czy zostanie wywołana z wartościami, które są dla mnie ważne.
Zacznę od metod rozszerzających, a testowanie przyjdzie samo.

Tak wygląda interfejs udostępniony przez samą (bez metod rozszerzających) klasę List:

Aby przewinąć listę na sam dół wystarczą trzy wciśnięcia Page Down. Jak widać jedyny import, z którego korzystam to System.Collections.Generic, wymagany aby móc skorzystać z List

To się stanie gdy dodam System.Linq: (obrazek się troszkę nie mieści)

Pojawi się nowa funkcjonalność, zdefiniowana w System.Linq, która pozwala robić cuda z listą i innymi IEnumerable (jak również innymi obiektami). Po imporcie aby przewinąć listę metod, trzeba osiem razy walnąć w Page Down.

Co zrobić, aby lista nowych funkcjonalności nie zaśmiecała dostępnego api? Można to wszystko ukryć przy pomocy jednej klasy, która przekierowuje żądania dalej, do właściwej części, gdzie zdefiniowane będą rozszerzenia
Normalnie implementacja rozszerzeń może wyglądać jakoś tak:

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: Consolas, “Courier New”, Courier, Monospace;
background-color: #ffffff;
/*white-space: pre;*/
}

.csharpcode pre { margin: 0em; }

.csharpcode .rem { color: #008000; }

.csharpcode .kwrd { color: #0000ff; }

.csharpcode .str { color: #a31515; }

.csharpcode .op { color: #0000c0; }

.csharpcode .preproc { color: #cc6633; }

.csharpcode .asp { background-color: #ffff00; }

.csharpcode .html { color: #800000; }

.csharpcode .attr { color: #ff0000; }

.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}

.csharpcode .lnum { color: #606060; }

   1:  namespace ConsoleApplication
   2:  {
   3:   
   4:      class Program
   5:      {
   6:          static void Main(string[] args)
   7:          {
   8:              MyClass mc = new MyClass();
   9:          }
  10:      }
  11:   
  12:      public static class MyClassExtension
  13:      {
  14:          public static void Foo0(this MyClass target) { }
  15:          public static void Foo1(this MyClass target) { }
  16:          public static void Foo2(this MyClass target) { }
  17:          public static void Foo3(this MyClass target) { }
  18:          public static void Foo4(this MyClass target) { }
  19:          public static void Foo5(this MyClass target) { }
  20:          public static void Foo6(this MyClass target) { }
  21:          public static void Foo7(this MyClass target) { }
  22:          public static void Foo8(this MyClass target) { }
  23:          public static void Foo9(this MyClass target) { }
  24:      }
  25:   
  26:      public class MyClass
  27:      {
  28:      }
  29:  }

Po takiej implementacji otrzymujemy cztery metody podstawowe, oraz dodatkowy dziesięć nowych z rozszerzenia w MyClassExtension.

Można trochę to wszystko uprościć dodając odpowiednią warstwę abstrakcji (abstrakcja was uwolni, zapamiętajcie to). Opis poniżej:

   1:  namespace ConsoleApplication
   2:  {
   3:      using System;
   4:   
   5:      class Program
   6:      {
   7:          static void Main(string[] args)
   8:          {
   9:              MyClass mc = new MyClass();
  10:              mc.ExtensionService().Foo0();
  11:          }
  12:      }
  13:   
  14:      public static class MyClassExtension
  15:      {
  16:          public static Func<MyClass, IMyClassExtensionService> ExtensionFactory { get; set; }
  17:   
  18:          static MyClassExtension()
  19:          {
  20:              ExtensionFactory = target=> new MyClassExtensionReleaseVersion(target);
  21:          }
  22:   
  23:          public static IMyClassExtensionService ExtensionService(this MyClass target)
  24:          {
  25:              return ExtensionFactory(target);
  26:          }
  27:      }
  28:   
  29:      public interface IMyClassExtensionService
  30:      {
  31:          void Foo0();
  32:          void Foo1();
  33:          void Foo2();
  34:          void Foo3();
  35:          void Foo4();
  36:          void Foo5();
  37:          void Foo6();
  38:          void Foo7();
  39:          void Foo8();
  40:          void Foo9();
  41:      }
  42:   
  43:      public class MyClassExtensionReleaseVersion : IMyClassExtensionService
  44:      {
  45:          private MyClass myclass;
  46:   
  47:          public MyClassExtensionReleaseVersion(MyClass target)
  48:          {
  49:              this.myclass = target;
  50:          }
  51:   
  52:          public void Foo0() { }
  53:          public void Foo1() { }
  54:          public void Foo2() { }
  55:          public void Foo3() { }
  56:          public void Foo4() { }
  57:          public void Foo5() { }
  58:          public void Foo6() { }
  59:          public void Foo7() { }
  60:          public void Foo8() { }
  61:          public void Foo9() { }
  62:      }
  63:   
  64:      public class MyClass
  65:      {
  66:      }
  67:  }

Tak się to prezentuje teraz:

Zacznę od linijki 29 gdzie zdefiniowany został interfejs ze wszystkimi metodami, które mają działać jako rozszerzenie dla klasy MyClass. Linia 43 to implementacja tego interfejsu, warto zauważyć że klasa ta nie jest statyczna, oraz nie posiada statycznych pól, a metody nie przyjmują parametrów. W konstruktorze otrzymuje ona obiekt, na rzecz którego ma działać. Najlepsze zostawiam na koniec, linijka 14, klasa udostępniająca rozszerzenie dla MyClass. W ExtensionService (23) wykorzystywana jest właściwość ExtensionFactory, który jest zwyczajną metodą wytwórczą, zwracającą nowy obiekt MyClassExtensionReleaseVersion, do którego przesyła obiekt, na rzecz którego ma zostać wywołana metoda rozszerzająca. Mam nadzieję, że kod tłumaczy to prościej niż ja. Linia 10 to nowy sposób na wywołanie metod rozszerzających. 
Właściwość ExtensionFactory została zdefiniowana jako publiczna, co umożliwia jego zmianę w razie potrzeby testowania. Tak samo obiekt rozszerzający jest deklarowany poprzez interfejs, w związku z czym w testach można wykorzystać np. MyClassExtensionMockVersion i sprawdzać czy klasa zachowuje się tak jak tego oczekujemy.

Ja skorzystałem z tego rozwiązania podczas testowania nawigacji w projekcie, który korzysta z PRISMa, tam do zmiany widoków wykorzystywany jest interfejs IRegionManager i kilka metod rozszerzających ten interfejs. Chciałem sprawdzić, czy po wykonaniu operacji X jedna z moich klas zarząda zmiany widoku. Jedynym sposobem, na sprawdzenie parametrów przesłanych w query było stworzenie i podstawienie własnej implementacji metod rozszerzających. Na początku testów mam taki zapis:

   1:  Capture.Common.Prism.PrismExtensions.ServiceFactory = p => new NavigationServiceMock(p);

Tak wygląda mój lipny serwis, który działa zamiast tego z Prism:

   1:  public class NavigationServiceMock : INavigation
   2:  {
   3:      private IRegionManager p;
   4:   
   5:      public NavigationServiceMock(IRegionManager p)
   6:      {
   7:          this.p = p;
   8:      }
   9:   
  10:      public IRegionManager AddToRegion(string regionName, object view)
  11:      {
  12:          throw new NotImplementedException();
  13:      }
  14:   
  15:      public IRegionManager RegisterViewWithRegion(string regionName, Func<object> getContentDelegate)
  16:      {
  17:          throw new NotImplementedException();
  18:      }
  19:   
  20:      public IRegionManager RegisterViewWithRegion(string regionName, Type viewType)
  21:      {
  22:          throw new NotImplementedException();
  23:      }
  24:   
  25:      public void RequestNavigate(string regionName, string source)
  26:      {
  27:          throw new NotImplementedException();
  28:      }
  29:   
  30:      public void RequestNavigate(string regionName, Uri source)
  31:      {
  32:          LoadTradeViewModelTest.NavigationServiceMock_RequestedNavigatedTargetRegionName = regionName;
  33:          LoadTradeViewModelTest.NavigationServiceMock_ReqestedNavigatedTargetUri = source.OriginalString;
  34:      }
  35:   
  36:      public void RequestNavigate(string regionName, string source, Action<NavigationResult> navigationCallback)
  37:      {
  38:          throw new NotImplementedException();
  39:      }
  40:   
  41:      public void RequestNavigate(string regionName, Uri source, Action<NavigationResult> navigationCallback)
  42:      {
  43:          throw new NotImplementedException();
  44:      }
  45:  }

Najważniejsze w tym wszystkim to RequestNavigate (30) gdzie zapisuje żądany region i uri. Później w teście porównuje czy są takie jak oczekiwałem. Wszystkie NotImplementedException są nie używane w testach, dlatego też mogły pozostać w takiej domyślnie oferowanej przez VS formie.
Normalna implementacja przekazuje wszystkie parametry do oryginalnej implementacji.

Pojawia się pewien problem, przy próbie stworzenie podobnego rozwiązania dla klas generycznych. Ten problem to kompilator, który cały czas twierdzi że metody rozszerzające muszą być w klasach statycznych, nie generycznych. Same metody mogą być generyczne. Aby to obejść na szybko wymyśliłem coś takiego

   1:  namespace ConsoleApplication
   2:  {
   3:      using System;
   4:      using System.Collections.Generic;
   5:   
   6:      class Program
   7:      {
   8:          static void Main(string[] args)
   9:          {
  10:              List<int> l = new List<int>();
  11:              l.GetExtension().Foo1();
  12:          }
  13:      }
  14:   
  15:      public static class ExtensionsFactory<T>
  16:      {
  17:          public static Func<List<T>, IListExtensionService> Factory { get; set; }
  18:      }
  19:   
  20:      public static class ListExtension
  21:      {
  22:          public static IListExtensionService GetExtension<T>(this List<T> target)
  23:          {
  24:              if (ExtensionsFactory<T>.Factory == null)
  25:              {
  26:                  ExtensionsFactory<T>.Factory = o => new ListExtensionSerivce<T>(o);
  27:              }
  28:   
  29:              return ExtensionsFactory<T>.Factory(target);
  30:          }
  31:      }
  32:   
  33:      public interface IListExtensionService
  34:      {
  35:          void Foo1();
  36:      }
  37:   
  38:      public class ListExtensionSerivce<T> : IListExtensionService
  39:      {
  40:          private List<T> list;
  41:   
  42:          public ListExtensionSerivce(List<T> target)
  43:          {
  44:              this.list = target;
  45:          }
  46:   
  47:          public void Foo1()
  48:          {
  49:              Console.WriteLine("foo and the list");
  50:          }
  51:      }
  52:  }

Cały trik w tym przypadku, to przeniesienie odpowiedzialności na wytwarzanie obiektów z ListExtension do ExtensionsFactory. A podczas wywołania metody, należny się upewnić że fabryka już istnieje.

Myślę że wystarczy mojego wymądrzania się na dziś. Podoba się? Nie podoba się? Macie inne sposoby? Pytania? Uwagi? Cokolwiek?

ps
Mam nadzieję, że więcej wyjaśniłem niż zakręciłem.
ps2
Jak już wszystko napiszę, to czytam czy jest ok, a potem i tak mam lekkiego stresa, że coś głupiego napisałem.

RX extensions w przykładach

RxExtension – to biblioteka od Microsoftu ułatwiająca programowanie asynchroniczne. Opiera się na istniejących interfejsach IObservable oraz IObserver.
W RX wiadomości są traktowane jako strumienie danych, do których należy się przypiąć i reagować na pojawienie się nowej wiadomości. Najnowsza wersja ma już cyferkę 2, ale nie jest jeszcze oznaczona jako stabilna. Ja do nauki wykorzystałem wersję 1 oraz książeczkę dostępną na stronie RX – Dev Labs Hands On. Na Channel9 są jakieś filmy na temat RX. Poniżej pokaże kilka przykładów i opis jak korzystać z RX, źródła pochodzą z książki, będą dostępne razem z książką i projektem MSVC. Drobna uwaga co do książki i źródeł: w książce podane są dwa pliki do których należny dodać referencję, aktualna wersja RX dostarcza tylko jednej biblioteki – System.Reactive, natomiast System.CoreEx jest już w systemie. Ja korzystałem z .net 4.0. Podobnie kilka metod wymienionych w książce nie jest już dostępne w związku z czym zostały zamienione na inne dostępne i spełniające te same wymagania.

Zaczynamy od poznania interfejsów:

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: Consolas, “Courier New”, Courier, Monospace;
background-color: #ffffff;
/*white-space: pre;*/
}

.csharpcode pre { margin: 0em; }

.csharpcode .rem { color: #008000; }

.csharpcode .kwrd { color: #0000ff; }

.csharpcode .str { color: #a31515; }

.csharpcode .op { color: #0000c0; }

.csharpcode .preproc { color: #cc6633; }

.csharpcode .asp { background-color: #ffff00; }

.csharpcode .html { color: #800000; }

.csharpcode .attr { color: #ff0000; }

.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}

.csharpcode .lnum { color: #606060; }

   1:  static void Main(string[] args)
   2:  {
   3:      IObservable<int> source = Observable.Empty<int>();
   4:      IObserver<int> handler = null;
   5:   
   6:      IDisposable subscription = source.Subscribe();
   7:      Console.WriteLine("Press ENTER to unsubscribe and dispose");
   8:      Console.ReadLine();
   9:   
  10:      subscription.Dispose();
  11:  }

RX opiera się o dwa interfejsy IObservable oraz IObserver. Klasa Observable pochodzi System.Reactive.Linq. Kod powyżej nie jest zbytnio porywający, ale pokazuje, że po subskrypcji do źródła danych otrzymujemy instancję IDisposable, którą trzeba będzie wywalić do kosza po zakończeniu pracy. Później będzie to zrobione przy użyciu mechanizmu using.

Interfejs IObserver definiuje trzy metody, które muszę zostać zdefiniowane:

   1:  public interface IObserver<in T>
   2:  {
   3:      void OnCompleted();
   4:      void OnError(Exception error);
   5:      void OnNext(T value);
   6:  }
  • OnCompleted: źródełko wyschło
  • OnNext:  nowa informacja
  • OnError: coś poszło nie tak

Podczas dopisywania się do obiektu, który ma dostarczać informacji można wykorzystać wyżej wymieniony interfejs lub skorzystać z wyrażeń lambda. To drugie podejście jest prostsze, dodatkowo nie wymagane jest definiowanie dla wszystkich metod z interfejsu.
Na początek pełna deklaracja:

   1:  static void Main(string[] args)
   2:  {
   3:      IObservable<int> source = Observable.Empty<int>();
   4:   
   5:      IDisposable subscription = source.Subscribe(
   6:          x=> Console.WriteLine("Has new value {0}", x),
   7:          ex=>Console.WriteLine("Exception caught {0}", ex.Message),
   8:          ()=>Console.WriteLine("No more items")
   9:          );
  10:   
  11:      Console.WriteLine("ENTER to dispose");
  12:      subscription.Dispose();
  13:  }

W tym przypadku od razu zostanie wywołana metoda OnCompleted, ponieważ źródło danych jest puste. Po zakończeniu pracy zwalniamy zasoby przez wywołanie Dispose na obiekcie zwróconym po subskrypcji. Co ważne, aby móc korzystać z rozszerzeń dla RX należy dodać referencję oraz using do System.Reactive.Linq.

Jednoelementowa kolekcja intów:

   1:  static void Main(string[] args)
   2:  {
   3:      IObservable<int> source = Observable.Return(42);
   4:   
   5:      var subscriber = source.Subscribe(
   6:          x=>Console.WriteLine("Value: {0}",x),
   7:          ex=>Console.WriteLine("Exception: {0}", ex.Message),
   8:          ()=>Console.WriteLine("end!")
   9:          );
  10:   
  11:      Console.WriteLine("ENTER to dispose");
  12:      subscriber.Dispose();
  13:  }

Kod powyżej zwróci raz wartość 42 (sens życia), a następnie zakończy poprzez wywołanie OnCompleted. Następnie zwolnienie zasobów. Ponownie wykorzystanie Reactive.Linq do stworzenia jednoelementowej kolekcji.

Aby zrobić coś ciekawszego można podmienić kod definiujący źródło na coś takiego:

   1:  IObservable<int> source = Observable.Range(5, 7);

Spowoduje do wygenerowanie cyfr od 5 do 11, następnie zakończy przez OnCompleted.

Aby nie zanudzać prostymi przykładami, RX umożliwia stworzenie obserwowanej pętli for, robi się to w taki sposób:

   1:  static void Main(string[] args)
   2:  {
   3:      IObservable<int> source = Observable
   4:          .Generate(0,          // initial state
   5:          i => i < 10,    // condition
   6:          i => i + 1,        // iteration step
   7:          i => i * i);       // iteration operation
   8:   
   9:      using (var s = source.Subscribe(
  10:          x => Console.WriteLine(x)    // only the working stuff will be handled
  11:                                          // no errors and no exceptions
  12:                                          // no information about sequence finish either
  13:          )) { };
  14:  }

Coraz ciekawiej co nie?
Zaczynamy od 0, następnie warunkiem jest i mniejsze od 10, w każdym kroku i będzie zwiększane co 1, a wynikiem operacji ma być i*i, wynik mnożenia nie jest zapisywany do i, tylko zwracany jako wynik. W przeciwnym wypadku pętla skończyła by się za wcześnie.
Podczas dopinania się do źródła definiujemy tylko metodę OnNext, która przyjmuje jeden parametr, w ten sposób nie zostaniemy powiadomieni o skończeniu się danych lub o wystąpieniu błędu. Dodatkowo wykorzystany zostanie mechanizm using, na który spadnie odpowiedzialność zwolnienia zasobów z IDisposable.

Jeśli zastanawialiście się jak to możliwe że pętla nie zakończy skoro w klamrach using nic nie ma, nie dziwcie się, dla mnie na początku to także było dziwne. Ale jeśli odpalić debuggera i sprawdzić wątki, to wszystkie wywołania są dokonywane z głównego wątku. Dopiero po skończeniu się zasobów w IObservable, zostanie wykonany kod z klamerek.

Żeby nie było nudno, teraz przykład z normalniejszym kodem, takim który jest w klamerkach:

   1:  static void Main(string[] args)
   2:  {
   3:      var source = Observable.Generate(
   4:          0,
   5:          i => i < 10,
   6:          i => i + 1,
   7:          i => i * i,
   8:          i => TimeSpan.FromSeconds(i)
   9:          );
  10:   
  11:      using (var s = source.Subscribe(
  12:          x => Console.WriteLine("next: {0}", x),
  13:          ex => Console.WriteLine("exception: {0}", ex.Message),
  14:          () => Console.WriteLine("no more")))
  15:      {
  16:          Console.WriteLine("ENTER");
  17:          Console.ReadLine();
  18:      }
  19:  }

Dwie zmiany zostały wprowadzone; dodałem 1 sekundowe opóźnienie w generowaniu wartości i, co powoduje że wywoływania zaczynają wreszcie być prawdziwie asynchroniczne. To powoduje, potrzebę umieszczenie Console.ReadLine w ciele using, w przeciwnym wypadku, nie zdążymy odczytać nawet pierwszej wartości. Walnięcie ENTER w trakcie działania dema, spowoduje jego zakończenie.
Okno wątków w debuggerze, pokazują że podczas wołania OnNext, wykorzystywany jest dodatkowy Worker Thread, stworzony przez RX.

Teraz drobna zmiana, do naszej konsoli dołożona zostanie prosta forma (WinForms – przykłady z książki są na tym oparte, więc i ja z tego skorzystałem). Będzie służyć za pośrednika do źródła danych, załóżmy sobie że jest taki kod:

   1:  static void Main(string[] args)
   2:  {
   3:      var label = new Label();
   4:      var form = new Form
   5:      {
   6:          Controls = { label }
   7:      };
   8:   
   9:      var moves = Observable.FromEventPattern<MouseEventArgs>(form, "MouseMove");
  10:   
  11:      using (moves
  12:          .Subscribe(
  13:              x => label.Text = x.EventArgs.Location.ToString(),
  14:              ex => label.Text = ex.Message,
  15:              () => label.Text = "Mouse is over?!" ) )
  16:      {
  17:          Application.Run(form);
  18:   
  19:      }
  20:  }

Pojawia się tutaj prosta forma z tekstem do którego będziemy zapisywać informacje o aktualnym położeniu myszy. To co interesujące znajduje się w linijce 9, gdzie tworzymy źródło danych na podstawie przychodzących zdarzeń z formy, następnie zapisujemy się do nich. Ponieważ w tym przykładnie nie stosowane są żadne specjalne opóźnienia (o nich poniżej), nie potrzeba tutaj wykorzystywać Dispatchera czy obiekty synchronizacji pomiędzy wątkami. W okienku wątków widać, że każde wywołanie metody OnNext realizowane jest w głównym wątku UI, dlatego bezpieczna jest modyfikacja labelki.

   1:  static void Main(string[] args)
   2:  {
   3:      var label = new Label();
   4:      var form = new Form
   5:      {
   6:          Controls = { label }
   7:      };
   8:   
   9:      var moves = Observable.FromEventPattern<MouseEventArgs>(form, "MouseMove");
  10:   
  11:      using (moves
  12:          .Subscribe(
  13:              x => label.Text = x.EventArgs.Location.ToString(),
  14:              ex => label.Text = ex.Message,
  15:              () => label.Text = "Mouse is over?!" ) )
  16:      {
  17:          Application.Run(form);
  18:      }
  19:  }

Najciekawsza jest linia 9, gdzie wydarzenia generowane przez formę/mysz są definiowane jako źródło danych, a następnie w linii 13 wartość ta zostaje wyłuskana z argumentów oraz zapisana w labelce na formatce.

Kolejny przykład będzie rozwinięciem tego powyżej:

   1:  static void Main(string[] args)
   2:  {
   3:      var textbox = new TextBox();
   4:      var form = new Form
   5:      {
   6:          Controls = { textbox }
   7:      };
   8:   
   9:      var moves = Observable
  10:          .FromEventPattern<MouseEventArgs>(form, "MouseMove")
  11:          .Select(e => e.EventArgs.Location);
  12:   
  13:      var texts = Observable
  14:          .FromEventPattern<EventArgs>(textbox, "TextChanged")
  15:          .Select(e => (e.Sender as TextBox).Text);
  16:   
  17:      var msubs = moves.Subscribe(x => Console.WriteLine("mouse position: {0}", x));
  18:      var ksubs = texts.Subscribe(x => Console.WriteLine("Textbox text: {0}", x));
  19:   
  20:      using (new CompositeDisposable(msubs, ksubs))
  21:      {
  22:          Application.Run(form);
  23:      }
  24:  }

Jak widać tutaj ponownie nasłuchujemy na wiadomości generowane przez ruch myszy, ale dodatkowo oczekujemy na wpisywany przez użytkownika tekst w formatce. Warto zauważyć, że w przypadku tekstu, źródłem danych nie jest formatka, ale sama kontrolka. W tym przykładzie pod uwagę bierzemy tylko pozytywne wywołania OnNext. Dodatkowo subskrypcja wykorzystuje projekcję (Select) i ostatecznej rozgrywce (17 i 18) otrzymujemy tylko takie wartości, które są dla nas najbardziej interesujące. Na sam koniec przykładu, wykorzystujemy klasę CompositeDisposable, która umożliwia wykorzystanie mechanizmu using na więcej niż jednym obiekcie IDisposable.

Kolejnym ciekawy rozszerzenie dla RX jest mechanizm Distinct, który wyśle powiadomienie tylko wtedy, gdy jest ono różne od poprzedniego.

   1:  var texts = Observable
   2:                .FromEventPattern<EventArgs>(textbox, "TextChanged")
   3:                .Select(e => (e.Sender as TextBox).Text)
   4:                .Do(e => Console.WriteLine("Before DistinctUntilChanged: {0}", e))
   5:                .DistinctUntilChanged();

Cały kod jest taki sam jak poprzednio, zmienia się tylko definicja źródła danych dla tekstu. Linia 4 pokazywać będzie, że wiadomości są przesyłane – metoda Do. Natomiast linia 5 zatrzyma ich dalszą propagację, gdy będę one takie same jak poprzednio otrzymane. Należy zwrócić uwagę podczas używania DistinctUntilChanged na kolejność jego użycia. Jeśli zostanie wywołany za wcześnie, kolejne eventy mogą nie zostać przesłane. W ramach ćwiczeń można wstawić go przed Select i zobaczyć co się dzieje. W tym przykładzie, pod uwagę brana będzie zawartości kontrolki w textboxie. A więc, gdy zaznaczona zostanie literka i zostanie zastąpiona przez taką samą, obiekt nasłuchujący nie zostanie powiadomiony o takie zmianie.

Następne rozszerzenie dla RX to Throttle, który powoduje że powiadomienia są przesyłane z pewnym opóźnieniem, każda nowa aktualizacja na źródle resetuje ten licznik. Dla przykładu, gdy chcemy udostępnić mechanizm który działa jak słownik z podpowiedziami, aby nie włączać wyszukiwania dla każdej wpisanej literki, można dodać małe opóźnienie rzędu kilkudziesięciu milisekund, które dla użytkownika będzie nie zauważalne, a jego wykorzystanie spowoduje zmniejszenie wykorzystania zasobów, ponieważ ilość generowanych zapytać będzie mniejsza. Poniżej przykład definicji takiego źródła danych:

   1:  var moves = Observable
   2:            .FromEventPattern<MouseEventArgs>(form, "MouseMove")
   3:            .Select(e => e.EventArgs.Location)
   4:            .Throttle(TimeSpan.FromMilliseconds(100));
   5:   
   6:  var texts = Observable
   7:            .FromEventPattern<EventArgs>(textbox, "TextChanged")
   8:            .Select(e => (e.Sender as TextBox).Text)
   9:            .Throttle(TimeSpan.FromMilliseconds(500))
  10:            .DistinctUntilChanged();

W pierwszy przypadku, informację o pozycji myszy otrzymamy gdy użytkownik okres około 100 ms nie będzie poruszać myszą. Należy być świadomym, że nie dostaniemy wszystkich wartości pośrednich, tylko ostatnią pozycję myszy. W drugim przypadku, jest dodatkowe założenie, użytkownik nie może zmieniać wartości tekstu przez około 500ms, a dodatkowo wartość musi być inna niż poprzednia – modyfikator DistinctUntilChanged. W bardzo prosty sposób ograniczyć można ilość powiadomień, które obsłużyć musi obiekt obsługujący kontrolkę.

Wcześniej mówiłem o tym, że będzie o pełniejszej asynchroniczności oraz o kontrolkach, czas najwyższy na rozwiązanie tej tajemnicy. Jeśli wiemy, że obsługa zdarzeń będzie wymagała interakcji z kontrolkami (lub kolekcjami – np. ObservableCollection w WPF) wymagającymi synchronizami z głównym wątkiem UI należy wykorzystać odpowiednie rozszerzenie, które umożliwia obserwację zdarzeń wykonywaną na głównym wątku aplikacji – zamieszane? Kod was oświeci:

   1:  static void Main(string[] args)
   2:  {
   3:      TextBox t1 = new TextBox();
   4:      Label l1 = new Label { Left = t1.Width + 20 };
   5:      Form f1 = new Form
   6:      {
   7:          Controls = { t1, l1 }
   8:      };
   9:   
  10:      var source = Observable
  11:          .FromEventPattern(t1, "TextChanged")
  12:          .Throttle(TimeSpan.FromMilliseconds(250))
  13:          .Select(x=>(x.Sender as TextBox).Text)
  14:          .DistinctUntilChanged();
  15:   
  16:      using (source
  17:          .ObserveOn(WindowsFormsSynchronizationContext.Current)
  18:          .Subscribe(x => l1.Text = x))
  19:      {
  20:          Application.Run(f1);
  21:      }
  22:  }

Jak widać, źródło danych działa teraz prawdziwie asynchronicznie (wykorzystanie Throttle), aby móc wykonać kod zdefiniowany w OnNext (linia 18) należy wcześniej powiedzieć że obsługa (obserwacja) ma nastąpić w WindowsFormsSynchronizationContext.Current (dla WPF to będzie Application.Current.Dispatcher lub Dispatcher.Current) – lub w implementacji wykorzystać mechanizm synchronizacji, jak zawsze to zależy od potrzeb implementacji. W takiej sytuacji źródło działa w osobnym wątku, ale powiadomienia i ich obsługa nastąpi w wątku głównym, gdzie można modyfikować UI.

Następny przykład jest trochę dłuższy, pokazuje jak wykorzystać RX w połączeniu z serwisami implementowanymi w WCF, dokładniejsze omówienie poniżej:

   1:  private static void Main()
   2:  {
   3:      var service = new DictServiceSoapClient("DictServiceSoap");
   4:      Func<string, string, string, IObservable<DictionaryWord[]>> match = Observable
   5:          .FromAsyncPattern<string, string, string, DictionaryWord[]>(
   6:              service.BeginMatchInDict, service.EndMatchInDict);
   7:   
   8:      Func<string, IObservable<DictionaryWord[]>> matchInWordNetByPrefix = term => match("wn", term, "prefix");
   9:   
  10:   
  11:      var t1 = new TextBox();
  12:      var f1 = new Form
  13:                   {
  14:                       Controls = {t1}
  15:                   };
  16:   
  17:   
  18:      IObservable<string> textSource = Observable
  19:          .FromEventPattern<EventArgs>(t1, "TextChanged")
  20:          .Throttle(TimeSpan.FromMilliseconds(250))
  21:          .Select(x => ((TextBox) x.Sender).Text)
  22:          .Where(x => x.Length > 0)
  23:          .DistinctUntilChanged();
  24:   
  25:      IDisposable formRequest = textSource
  26:          .Finally(()=>Console.WriteLine("Finalized"))
  27:          .Subscribe(x => matchInWordNetByPrefix(x)
  28:                              .Finally(() => Console.WriteLine("Finalized: {0}", x))
  29:                              .Subscribe(words =>
  30:                                             {
  31:                                                 Console.WriteLine("{0} - {1}", x, words.Count());
  32:                                                 foreach (DictionaryWord w in words)
  33:                                                 {
  34:                                                     Console.Write("{0},", w.Word);
  35:                                                 }
  36:                                                 Console.WriteLine("n*******************************************");
  37:                                             },
  38:                                         ex =>
  39:                                             {
  40:                                                 Console.WriteLine("n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");
  41:                                                 Console.WriteLine(ex.Message);
  42:                                                 Console.WriteLine("n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");
  43:                                             }));
  44:   
  45:   
  46:      using (formRequest)
  47:      {
  48:          Application.Run(f1);
  49:      }
  50:  }

Zacznijmy od początku:
Linia 3 definiuje nowe proxy do serwisu WCF, nie istotne z punktu widzenia RX. Następnie linia 4 definiuje zmienną typu Func, będzie to delegat przyjmujący jako dane wejściowe trzy stringi, a zwracający tablicę wyrazów słownikowych (ach ten mój angielski). Dalej (ciągle w linii 4) przypisujemy do tego delegata metodę z RX wykorzystując wcześniej zdeklarowany serwis WCF, a dokładniej dwie jego metody BeginMatchInDict oraz EndMatchInDict. Są to dwie metody, które umożliwiają asynchroniczne wykorzystanie serwisu. Podczas definiowania dostępu do serwisu WCF zaznaczona została opcja generowania zapytań asynchronicznych. Dalej, linia 8 to ponowne zdefiniowanie delegata, tym razem będzie on przyjmować tylko jeden argument – string, który będzie zawierać właściwe dla nas zapytanie, zwracany typ nie ulegnie zmianie. Pozostałe dwa stringi zostają przypisane na stałe. Ich wartość nie jest istotna dla RX. Teraz możemy korzystać asynchronicznie z WCF podając tylko jednego stringa podczas zapytania. Potem “normalna” definicja formatki, później źródełko z danymi;  pierwsze to textbox, drugie to serwis WCF który na podstawie wysłanej części słowa, zwraca tablicę wyrazów, który mogą je dokończyć (np. “yellow a“: yellow adder’s tongue,yellow ageratum,yellow asphodel,yellow avens). Metoda Finally posłuży aby wykonać jakiś kod w momencie zwalniania zasobów zwróconych przez Subscribe. Kod z linijki 28 zostanie wykonany po tym, gdy wszystkie pasujące słowa zostaną wypisane na ekran. Linijka 26 zostanie wywołana po zamknięciu formatki, czyli  zakończeniu using z linii 46.

Jeśli podczas zabawy z tym przykładem zauważycie, że możliwe jest zdefiniowanie nowego pytania do serwisu WCF zanim, przyjdzie odpowiedź na wcześniejsze – to macie racje (za .net rocks – golfclap for you). Występuje tu taka sytuacja. Na rozwiązanie tego problemu zaproponowano dwa podejścia, dla mnie Switch jest (będzie poniżej) czytelniejszy i zrozumiały. W udostępnionym projekcie są oba rozwiązania.

   1:  static void Main(string[] args)
   2:  {
   3:      var t1 = new TextBox();
   4:      var l1 = new ListBox { Top = t1.Height + 10, Height = 250, Width = 150 };
   5:      var f1 = new Form
   6:      {
   7:          Controls = { t1, l1 }
   8:      };
   9:   
  10:      var textSource = Observable
  11:          .FromEventPattern<EventArgs>(t1, "TextChanged")
  12:          .Throttle(TimeSpan.FromMilliseconds(50))
  13:          .Select(x => (x.Sender as TextBox).Text)
  14:          .Where(x => x.Length >= 3)
  15:          .DistinctUntilChanged()
  16:          .Do(Console.WriteLine);
  17:   
  18:      var service = new DictServiceSoapClient("DictServiceSoap");
  19:      var dictSource = Observable
  20:          .FromAsyncPattern<string, string, string, DictionaryWord[]>(service.BeginMatchInDict, service.EndMatchInDict);
  21:   
  22:      Func<string, IObservable<DictionaryWord[]>> matchInWordNetByPrefix = term => dictSource("wn", term, "prefix");
  23:   
  24:      var data = textSource
  25:          .Select(x => matchInWordNetByPrefix(x))
  26:          .Switch();
  27:   
  28:      using (data
  29:          .ObserveOn(WindowsFormsSynchronizationContext.Current)
  30:          .Subscribe(w =>
  31:          {
  32:              l1.Items.Clear();
  33:              l1.Items.AddRange(w.Select(word => word.Word).ToArray());
  34:          },
  35:          ex =>
  36:          {
  37:              MessageBox.Show(ex.Message);
  38:          }))
  39:   
  40:          Application.Run(f1);
  41:  }

Początek bez zmian, dopiero podczas wykorzystywania tego co wpisze użytkownik i przesyłania tego do serwisu WCF, pojawiają się pierwsze zmiany. Na początku (linia 24) czekamy aż, użytkownik coś wpisze, a następnie wysyłamy to do serwisu. Jeśli w między czasie użytkownik zmieni coś w kontrolce, ponownie wyślemy zapytanie, ale z nową wartością. Aby nie obsługiwać wyników dla poprzedniego zapytania wykorzystana zostaje metoda Switch, której działanie polega na zwróceniu wyniku tylko z ostatniego zapytania, wszystkie poprzednie zostają anulowane. Reszta zmian to tylko kosmetyka, w tym przykładnie wyniki pojawiać się będą w kontrolce na formatce.

Na moje oko RX wydaje się być interesującym rozszerzeniem, umożliwiającym uproszczenie i kodu, a już na pewno metody jak Throttle czy DistinctUntilChanged uczynią aplikacje mniej zasobożernymi. Jak z każdą nowo poznaną technologią trzeba trochę czasu, aby poznać wszystkie za i przeciw. Ja na razie jestem na etapie wow. Poprawcie mnie jeśli się mylę, ale RX jest wyczesany.

Projekt, źródła i książka dostępne pod następującym adresem:
Projekt: https://bitbucket.org/jstadnicki/rx-examples
Git: https://bitbucket.org/jstadnicki/rx-examples.git